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OUTLINE
• Introduction: the chemical structure – toxicity 

modeling continuum

• A little bit of methodology: predictive QSTR 
modeling workflow

• Applications 
– Prediction of chemical carcinogenicty in rodents using 

hybrid chemical and biological descriptors

– Consensus QSAR modeling of aquatic toxicity
– Structure – In vitro – In vivo Correlations: Biological 

Data Partitioning and Hierarchical Modeling of Rodent 
Chemical Toxicity

– Concordance between animal and human DILI data 

• Conclusions: Toxico-cheminformatics is a 
decision support tool



Toxicity testing

Human health risk

Chemical Structure – Toxicity 
Data Continuum.



Toxicity Risk Assessment

NO2 increasing complexity 

increasing relevance to RA

increasing uncertainty

SARSAR
structurestructure--activityactivity

relationshipsrelationships

ChemocentricChemocentric

view of view of 

biological databiological data

Slide courtesy of Dr. Ann Richard (EPA)
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Only accept models 

that have a 

q2 > 0.6

R2 > 0.6, etc.

Multiple 

Training Sets

Validated Predictive 

Models with High Internal 

& External Accuracy

Predictive QSAR Workflow*

Original 

Dataset

Multiple 

Test Sets

Combi-QSPR 

Modeling
Split into 

Training, Test, 

and External 

Validation Sets

Activity 

Prediction

Y-Randomization

External validation

Using Applicability 

Domain (AD)

Prediction of 

Potential Safety 

Alerts to 

Prioritize for 

Testing

*Tropsha, A.,* Golbraikh, A. Predictive QSAR Modeling Workflow, Model 
Applicability Domains, and Virtual Screening. Curr. Pharm. Des., 2007, 13, 3494-3504. 

Experimental 

Validation of 

Prioritized Alerts



Experimental Study  I:
The Use of High Throughput 
Screening Data as Additional 

Biological Descriptors Improves the 
Prediction Accuracy of Conventional 

QSAR Models of Chemical 
Carcinogenicity* 

Zhu et al, EHP, 2008, (116): 506-513 



NTP-HTS Content Summary of 
1408 Compounds

• Chemical Types:
– Organic: 1,348
– Inorganic: 27
– Organometallic: 19
– No structure: 14

• 1348 Organic compounds contain:
– Normal: 1,279
– Complex: 51
– Salts: 20
– Duplicates: 53

• Finally, 1,289 unique organic compounds identified



Characteristics of the 
Experimental Activities of 1,289 

Compounds
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Additional biological data on 
1,289 Compounds

1813834231,0531,1531,289

IRISSICPDBHPVCSINTPGTZNTPBSINTP-HTS

NTPBSI: National Toxicology Program Chemical Structure Index file
NTPGTZ: National Toxicology Program genotoxicity
HPVCSI: High Production Volume Chemicals
CPDB: Carcinogenic Potency Data Base All Species
IRISSI: EPA Integrated Risk Information System

The table is based on the DSSTox project of Dr. Ann Richard at EPA.



Division of the dataset into modeling 
and external Sets

• 314 out of 383 CPDB compounds after removing 
69 compounds with inconclusive carcinogenicity 
results.

• Randomly excluded 50 compounds as external test 
set.

• Using sphere exclusion approach to split the 
remaining 264 compounds into multiple 
training/test set pairs.



The Relationship between HTS 
Results and Rodent 

Carcinogenicity

 HTS actives HTS inconclusives HTS inactives 

CPDB actives 30 12 136 

CPDB Inactives 9 13 114 

Correlation 77% - 46% 
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Prediction accuracy for the external 
dataset of 50 Compounds 

 Chemical descriptors only Combined descriptors 

 Exp. Actives Exp. Inactives Exp. Actives Exp. Inactives 

Pred. actives 18 8 22 6 

Pred. inactives 8 10 6 12 

Predictivity 69.2% 55.5% 78.6% 66.7% 

Overall Predictivity 
62.3% 72.7% 

Coverage 88% 92% 

 



Comparison between Predictive Power 
of QSAR Models using Conventional 

vs. Hybrid Descriptors.
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Relative contributions of HTS 
descriptors to 34 acceptable models
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Conclusions of the Study I

• 1. NTP-HTS screening data have limited predictive power 
for rodent carcinogenicity.

• 2. Using the NTP-HTS data as biological fingerprint 
descriptors significantly improved the overall QSAR-based 
prediction accuracy of rodent carcinogenicity.

• 3. With sufficient improvements in resulting model 
predictive performance, in vitro HTS bioassays, coupled 
with traditional chemical structure-based descriptors, may 
be ultimately helpful in prioritizing or partially replacing in 
vivo toxicity testing 



Experimental Study II:
Combinatorial QSAR Modeling 
of Chemical Toxicants Tested 

against Tetrahymena pyriformis*

*Zhu et al, JCIM, 2008, (48): 766-784 ; Tetko et al, JCIM, 2008, ASAP



International Virtual Collaboratory* of 
Computational Chemical Toxicology 

• USA: UNC-Chapel Hill (UNC) - H. Zhu and A. 
Tropsha

• France: University of Louis Pasteur (ULP) – D. 
FOURCHES and A. VARNEK

• Italy: University of Insubria (UI) – E. PAPA and P. 
GRAMATICA

• Sweden: University of Kalmar (UK) – T. ÖBERG
• Germany: Munich Information Center for Protein 

Sequences/Virtual Computational Chemistry 
Laboratory (VCCLAB)– I. TETKO

• Canada: University of British Columbia (UBC) –
A. CHERKASOV

*a new networked organizational form that also includes social processes; 
collaboration techniques; formal and informal communication; and
agreement on norms, principles, values, and rules



The T. pyriformis toxicity dataset 

• Compiled from several publications of T. 
Schultz’s group (2001-2005) and the Tetratox
website (http://www.vet.utk.edu/TETRATOX/)

• Corrected over 100 errors (chemical structures, 
chemical name and CAS ids).

• 983 unique compounds: 644 compound in 
modeling set; 339 compound in the external 
validation set I.

• 110 new compounds from a recent publication 
(Schultz et al, 2007) and used as the external 
validation set II.



Different countries, different groups, 
different tools – shared basic principles

• Explore and combine various QSAR approaches

• Use extensive model validation and applicability 
domains

• Consider external prediction accuracy as the 
ultimate criteria of model quality 
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Overview of the Approaches (15 
methodologies total)

Maximal correlation coefficient of the test 
molecule to the training set molecules in the space 
of models

E-stateASNNMIPS

Descriptor variabilityIND_IMLR, 
ANN,  
SVM, PLS

UBC

Residual standard deviation and leverage within 
the PLSR model

DragonPLSUK

Leverage approachDragonOLSUI

Euclidean distance threshold between a compound 
and compounds in the modeling set; bounding box

FragmentsMLR, kNN, 
SVM

ULP

Euclidean distance threshold between a test 
compound and compounds in the modeling set

MolConnZ, 
Dragon

kNN, SVMUNC

Applicability DomainDescriptor 
Type

Modeling 
Techniques 

Group 
ID



The Prediction of the Two Evaluation 
Sets by Consensus Models

 1st Evaluation Set 

(n=339) 
2nd Evaluation Set 

(n=110) 
Model  

Group 
ID RI

2
 SEI Coverage RII

2
 SEII Coverage 

kNN-Dragon UNC 0.87 0.30 80.2% 0.77 0.29 52.7% 

kNN-MolconnZ  UNC 0.86 0.31 84.3% 0.50 0.36 53.6% 

SVM-Dragon  UNC 0.82 0.39 80.2% 0.83 0.31 52.7% 

SVM-MolconnZ UNC 0.84 0.37 84.3% 0.59 0.41 53.6% 

kNN-Fragmental ULP 0.71 0.47 100% 0.41 0.53 100% 

SVM-Fragmental ULP 0.78 0.49 100% 0.46 0.62 100% 

MLR ULP 0.82 0.43 97.3% 0.48 0.62 95.5% 

MLR-CODESSA ULP 0.72 0.47 100% 0.59 0.44 100% 

OLS UI 0.77 0.43 98.5% 0.59 0.49 98.2% 

PLS UK 0.81 0.40 96.1% 0.60 0.49 95.5% 

ASNN MISP 0.88 0.33 87.4% 0.76 0.40 71.8% 

PLS-IND_I UBC 0.74 0.39 99.7% 0.45 0.54 100% 

MLR-IND_I UBC 0.75 0.40 99.7% 0.46 0.53 100% 

ANN-IND_I UBC 0.76 0.39 99.7% 0.46 0.53 100% 

SVM-IND_I UBC 0.79 0.35 99.7% 0.53 0.46 100% 

Consensus 
Model 

- 0.87 0.27 100% 0.70 0.34 100% 



Which model is best?
• Observation: Models that afford most accurate 

predictions for the validation sets are not 
necessarily ranked as top models for the modeling 
set.

• Back to choices and practices: So how do we 
choose “the best” models?

Should we choose?
• Consensus Prediction

– Only predict compounds within the applicability 
domain of most models

– For each compound, exclude predictions that have high 
deviations from the mean value 

– Final predicted value is the average all predictions.



Consensus Model gives the lowest 
MAE of prediction (Validation Set II)



Conclusions of the aquatic toxicity 
modeling

• Training set modeling is insufficient to guarantee 
externally predictive models

• The use of AD is critical to achieve respectable 
external predictivity of individual models BUT 
one should keep in mind the balance between 
predictivity and space coverage

• Consensus prediction 
– affords the high predictive power
– lowest MAE
– stable against relatively inefficient individual models
– Avoids the problem of choice!!!



Experimental Study III:
Structure – In vitro – In vivo 
Correlations: Biological Data 
Partitioning and Hierarchical 

Modeling of Rodent Chemical 
Toxicity*

*Zhu et al, in preparation



ZEBET Database* and Data 
Preparation

361 compounds
cytotoxicity IC50 and both rat and/or 
mouse LD50 

291 compounds
inorganics, mixtures and heavy metal 
salts are removed

253 compounds

230 compounds 
modeling set

23 compounds 
validation set

both in vitro IC50 values and rat 
LD50 results

Random split

*The ZEBET database was 

provided by Dr. Ann 

Richard (EPA)



Poor in vitro-in vivo Correlation 
Between IC50 and Rat LD50 Values

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

-4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00

in vitro IC50 (mmol/l)

in
 v

iv
o

 L
D

5
0
 (

m
m

o
l/
k
g

)

R2=0.46



A New Method to Use in vitro Toxicity 
Results to Assist the QSAR Modeling of in 

vivo Toxicity Endpoint

R
2
 = 0.8931
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Moving Regression for Data 

Partitioning
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Cytotoxicity IC50 Values vs. Other in vivo 
Toxicity Results

• IC50 vs. mouse LD50 
values

• IC50 vs. rat NOAEL 
values

• IC50 vs. rat LOAEL 
values
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Modeling Workflow

230 

compound 

modeling set

23 external 

compounds

122 C1 compounds

Split into three sets 

based on baseline 

identified between 

IC50 and LD50

93 C2 compounds 40 kNN LD50 models

642 kNN LD50 

models

15 outliers below 

the baseline

517 kNN 

classification models

253 compounds 

with IC50 and 

LD50 results



Prediction Workflow

Test set

Final prediction

Class 1 

compounds

Classification based on 

517 kNN models

Class 2 compounds

Predict LD50 values 

based on 40 kNN 

LD50 models

Predict LD50 values 

based on 642 kNN 

LD50 models



Classification of the Rat LD50 Values 
for the External Set of 23 Compounds

56Exp. 
C2

27Exp. 
C1

Pred. 
C2

Pred. 
C1

54Exp. 
C2

06Exp. 
C1

Pred. 
C2

Pred. 
C1

No AD: 
Classification rate = 62%

With AD: 
Classification rate = 78%



Prediction of the Rat LD50 Values of the 
External 23 Compounds

• R2=0.79, MAE=0.37, Coverage=74% (17 out of 23)
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Prediction of New ZEBET 
Compounds

• Additional 115 ZEBET compounds with rat LD50 
testing results obtained from Interagency 
Coordinating Committee on the Validation of 
Alternative Methods (ICCVAM).

• R2, MAE and prediction coverage of 0.60, 0.46, 
and 62% 



Comparison Between Our Model and Toxicity 
Prediction by Komputer Assisted Technology 

(TOPKAT) LD50 Predictor
• 27 out of the 115 new ZEBET compounds that do 

not exist in the TOPKAT LD50 training set 
(version 6.1).

• Prediction of 27 new ZEBET compounds

70%100%70%100%Coverage

0.460.780.340.42MAE

0.500.160.730.69R2

With ADNo ADWith ADNo AD

TOPKATOur model



RTECS Rat Oral LD50 Dataset 
Overview

• 7,385 unique compounds total after removing 
inorganic compounds and mixtures.
– provided by Dr. Todd Martin (EPA)

• Split the whole dataset into two parts: 3,472 
compound modeling set and 3,913 compound 
validation set. All the compounds in the validation 
set were not included in the TOPKAT LD50 
Predictor training set (version 6.1).



QSAR Methods

• UNC: Random Forrest (RF) and kNN

• EPA: Hierarchical Modeling, Nearest Neighbor 
(NN), FDA QSAR

• Descriptors: Dragon descriptors, fragmental 
descriptors

• Various types of Applicability Domain (AD) 



7 Individual QSAR Models 

• UNC: RF (two models) and kNN*

• EPA: Hierarchical with fragment constraint, Hierarchical 
no fragment constraint, NN, FDA QSAR

*UNC group used two modeling set: the original 3,472 
compound modeling set and a reduced modeling set 
(2,475) after removing 997 structural outliers. RF model 
were developed for both sets and kNN models were only 
developed for reduced set.



External Validation Results for 7 
Individual Models

RF_full
set

RF_red
set

kNN_red
set

Hierarchi
cal with 
fragment 
constraint

Hierarchi
cal no 

fragment 
constraint

Nearest 
neighbor FDA

R2 0.57 0.7 0.66 0.36 0.27 0.24 0.29

MAE 0.46 0.41 0.44 0.58 0.60 0.61 0.60

Coverage 50% 20% 20% 66% 93% 97% 95%



The Comparison Between Combi-
QSAR and TOPKAT Results

Consensus 
(at least 1 

model) TOPKAT

Consensus 
(70% of 
models.) TOPKAT

Consensus 
(All 

models) TOPKAT

R2 0.41 0.19 0.62 0.39 0.76 0.60

MAE 0.54 0.77 0.44 0.60 0.38 0.50

Coverage 100% 100% 41% 41% 16% 16%



Experimental Study IV:
Concordance between animal and 

human DILI data *

*Zhu et al, in preparation



Introduction

Recently, the Safety Intelligence Program (SIP) 

group members performed a data analysis in order

“to assess the degree of concordance across 

species for drug-induced liver effects”, and thus, to 

complete the “Non-Clinical Guideline On Drug-

Induced Hepatoxicity” published by the European 

Medicines Agency (EMEA).

One of the SIP goals is to contribute to the 

challenging quest for accurate tools to predict the 

drug-induced liver injury (DILI) potential associated 

with drug candidates approaching clinical use.

Hepatotoxicity is a major safety concern for 

drug development, as being a leading cause 

of candidate attrition.

Sources : M. Fung et al. Drug Information Journal, 2001.

MDS Pharma Services Issue, 2008, 7, 1-13.



BioWisdom Confidential Information © 2008

Public Domain Sources

Structured

Data Loader

DocView
(manual validation)

Automated

Assertion Generation

Sofia Terminology &

Ontology

Intelligence Network

Structured Data Sources
e.g, GO, UMLS, SWISS_PROT

Unstructured Data Sources
e.g, Medline, Patents, FDA SBAs

Meta-Search
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Noun Phrase Discovery
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Relations Typing

Semantic Normalisation

Chemistry Canonicalisation

Data Source Descriptors

Concept Maps

QA
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Fail

QA

Pass

Proprietary SourcesLicensed Sources

Pass

User Defined

Term List

Intelligence Network Build Process

Slide courtesy of Julie Barnes, Biowisdom



Data transformation for the Venn diagram

only only only

Species profile for each compound (951) was retrieved from the original 

data. This step was done automatically with a program written in Delphi.

Then, the table required to draw the Venn diagram was calculated:

It should be emphasized 

that we assume that 

each compound has been 
tested in all species, i.e., 

humans, rodents and non-
rodents.

“1” = toxic

“0” = non-toxic



HUMAN

(650)
RODENT

(685)

NON-RODENT(166)

Results : the Venn Diagram of Curated Biowisdom data

236 257

18

292

12

26

110

Total number
of compounds:

951



Results : the Venn Diagram of 

Curated Biowisdom data

Concordance between humans
and rodents ?
In our opinion it should reflect data on

BOTH toxic and non-toxic compounds!

Concordance = 
# toxicants BOTH for humans/rodents   +   # NON-toxicants BOTH for humans/rodents

Total of tested chemicals

Concordance =                                           � 44.2 %
(292 + 110)  +   18

951

(Using Biowisdom initial data – 1061 compounds, we found concordance � 42.4 %)



Conclusions about concordance
across species

H

H R NR

NR

R

44.2%

44.2%

39.9%

39.9%

39.1%

39.1%

- Calculated concordance values between species are very close.

- Surprisingly, there is no large gap between concordance values (the difference 

between concordances H/R and H/NR is less than 5%) as one could suppose.

- These results are valid if and ONLY IF the following assumption is correct: each 

compound has been effectively tested for each category H, R and NR, and in 

each case, found either toxic or non-toxic. 

For example: we assume that 18  compounds that have been found to be only toxic for 

non-rodents have been tested on both humans and rodents and found to be non-toxic.



1. Clustering of 951 compounds in chemical space

The cluster analysis has been performed using fragment descriptors, hierarchical algorithm, 

Euclidean metrics between compounds, and a complete linkage between clusters.

Small clusters have then been identified with pretty high levels of similarity between compounds.



1. Clustering of compounds in chemical space

ID = 45
HUMAN = 0
RODENT = 1
NON-RODENT = 0

ID = 76
HUMAN = 0
RODENT = 1
NON-RODENT = 0

ID = 93
HUMAN = 0
RODENT = 1
NON-RODENT = 0

ID = 543
HUMAN = 0
RODENT = 1
NON-RODENT = 0

Example 1:

Example 2:

ID = 201
HUMAN = 1
RODENT = 0
NON-RODENT = 0

ID = 208
HUMAN = 1
RODENT = 0
NON-RODENT = 0

ID = 223
HUMAN = 0 (???)
RODENT = 1 (???)
NON-RODENT = 0



3. QSAR based classification

HUMAN
ONLY

RODENT
ONLY

Could we predict the class of a compound from its structure only ?

Class 1
(248)

Class 2
(283)

Compounds found 

to be toxic

for humans only

Compounds found 

to be non-toxic

for humans



QSAR based classification
H

U
M

A
N

S
R

O
D

E
N

S
1

6

11

16

21

26

31

36

41

46

51
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37
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23
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38
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14
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34

39

44

49

54

Etc.

5
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15
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35
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45

50

55

Etc.

External 5 fold

Cross validation

FOLD1 FOLD2 FOLD3 FOLD4 FOLD5

20% of compounds                EXTERNAL SET

80% of compounds                MODELING SET

Models are built using the modeling set ONLY.



QSAR based classification

Using SUPPORT VECTOR MACHINES (SVM)

Fold
Modeling set

5 fold CV

Accuracy (%) = (number of compounds correctly predicted )/(total number of compounds)

Modeling set

Accuracy

External set

Accuracy
Model ID

1               62.3%               88.2%              71.0%    217

62.9%               77.6%              67.3%              162

2               64.9%               81.2%              64.2%    112

67.5%               81.2%              55.7%   197

3               62.4%               91.3%              64.2%    194

65.2%               91.1%              61.3%              198

4               64.9%               99.3%              72.6%    208

62.1%               84.9%              68.9%              151

5               63.3%               82.6%              68.9% 205

61.9%               94.4%              70.8%              175

fragments

fragments

fragments

fragments

fragments

Dragon

Dragon

Dragon

Dragon

Dragon

Descriptors

NB: The  results are preliminary, could be improved.



3. QSAR based classification

HUMAN
ONLY

RODENT
ONLY

Class 1
(248)

Class 2
(283)

18

EXTERNAL SET
(18 compounds being non-toxic

in humans)

QSAR MODELS



3. QSAR based classification

Compounds
Modeling set

5 fold CV

Modeling set

Accuracy

External set

Accuracy
Model ID

18             62.9%               92.5%              77.8%     206

64.0%               97.9%              66.7%              141

Fragments

Dragon

Descriptors

14 of 18 compounds are predicted

as non-toxic for humans.

Hepatotoxicity induced by 4 compounds

is not well predicted. BUT:

Sulfadoxine (ID=820)
Human = 0
Rodent = 0
Non-Rodent = 1

IN THE TRAINING SET:
Sulfadimethoxine (ID=819)
Human = 1
Rodent = 0
Non-Rodent = 0

Missing/incorrect data ???



Conclusions of Study IV

Cluster analysis allowed us to identify multiple clusters, in which compounds belong to 

congeneric series. Similar toxicity profiles are observed for certain clusters. Similarity 
in chemical space could help to double check the toxicity reported in the 

literature for different species.

QSAR models have been generated to predict the toxicity of compounds for humans. 

Despite the apparent diversity of data, models show fairly good prediction power 

assessed by five-fold cross validation procedures, and confirmed by the application of 

models to an external set of 18 compounds (under the same assumption of the 

completeness of toxicity testing across all compounds and species).

We focused on the concordance analysis across species for hepatotoxicity induced by 

drugs. Results showed close concordance values (~40%) for Human/Rodents and 

Human/Non-Rodents. However, this conclusion is valid if and only if we assume 
that each compound of the set has been effectively tested for each category 

(human, rodent and non-rodent), and in each case, found either toxic or non-
toxic.



Final Thoughts

• Focus on accurate prediction of external datasets is much 
more critical than accurate fitting of existing data
– validation!!!

– applicability domain

– consensus prediction using all acceptable models

– Ideally, experimental validation of a small number of 
computational hits

• Predictive QSAR workflow with extensive validation 
affords statistically significant models
– reliable property predictors 

– decision support tools in selecting experimental  screening sets

• HTS and –omics data may be insufficient to achieve the 
desired accuracy of the end point property prediction BUT 
should be explored  as biodescriptors in combination with 
chemical descriptors

Nothing that is worth knowing can be taught.
Oscar Wilde
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